MathDB
f(a) + f(b)<= f (a + b) <= f(a) + f(b) + 1 if kf(n) <= f (kn) <= kf(n)+ k- 1

Source: OLCOMA Costa Rica National Olympiad, Final Round, 2015 C2 p5

September 23, 2021
algebrainequalitiesFunctional inequalityfunctional

Problem Statement

Let f:N+N+f: N^+ \to N^+ be a function that satisfies that kf(n)f(kn)kf(n)+k1,k,nN+kf(n) \le f (kn) \le kf(n)+ k- 1, \,\, \forall k,n \in N^+ Prove that f(a)+f(b)f(a+b)f(a)+f(b)+1,a,bN+f(a) + f(b) \le f (a + b) \le f(a) + f(b) + 1, \,\, \forall a, b \in N^+