MathDB
1^m + 2^m + .. + n^m >= n\cdot ( \frac{n+1}{2})^m

Source: Polish MO second round 1969 p4

August 28, 2024
inequalitiesnumber theory

Problem Statement

Prove that for any natural numbers min the inequality holds 1m+2m++nmn(n+12)m1^m + 2^m + \ldots + n^m \geq n\cdot \left( \frac{n+1}{2}\right)^m