MathDB
over M2(C), M^2+N^2=0 and MN+NM=I, existence of matrix A

Source: SEEMOUS 2013 P2

June 8, 2021
linear algebramatrix

Problem Statement

Let M,NM2(C)M,N\in M_2(\mathbb C) be two nonzero matrices such that M2=N2=02 and MN+NM=I2M^2=N^2=0_2\text{ and }MN+NM=I_2where 020_2 is the 2×22\times2 zero matrix and I2I_2 the 2×22\times2 unit matrix. Prove that there is an invertible matrix AM2(C)A\in M_2(\mathbb C) such that M=A(0100)A1 and N=A(0010)A1.M=A\begin{pmatrix}0&1\\0&0\end{pmatrix}A^{-1}\text{ and }N=A\begin{pmatrix}0&0\\1&0\end{pmatrix}A^{-1}.