MathDB
Find the greatest real number...

Source: Vietnam TST 1997, Problem 3

July 28, 2008
inductioninequalitiesalgebrapolynomialnumber theory unsolvednumber theory

Problem Statement

Find the greatest real number α \alpha for which there exists a sequence of infinitive integers (an) (a_n), ( n \equal{} 1, 2, 3, \ldots) satisfying the following conditions: 1) an>1997n a_n > 1997n for every nN n \in\mathbb{N}^{*}; 2) For every n2 n\ge 2, Unanα U_n\ge a^{\alpha}_n, where U_n \equal{} \gcd\{a_i \plus{} a_k | i \plus{} k \equal{} n\}.