MathDB
sum of rows and columns of matrix, sign

Source: VJIMC 2003 1.2

July 12, 2021
matrixlinear algebrasuperior algebra

Problem Statement

Let A=(aij)A=(a_{ij}) be an m×nm\times n real matrix with at least one non-zero element. For each i{1,,m}i\in\{1,\ldots,m\}, let Ri=j=1naijR_i=\sum_{j=1}^na_{ij} be the sum of the ii-th row of the matrix AA, and for each j{1,,n}j\in\{1,\ldots,n\}, let Cj=i=1maijC_j =\sum_{i=1}^ma_{ij} be the sum of the jj-th column of the matrix AA. Prove that there exist indices k{1,,m}k\in\{1,\ldots,m\} and l{1,,n}l\in\{1,\ldots,n\} such that akl>0,Rk0,Cl0,a_{kl}>0,\qquad R_k\ge0,\qquad C_l\ge0,or akl<0,Rk0,Cl0.a_{kl}<0,\qquad R_k\le0,\qquad C_l\le0.