Let A=(aij) be an m×n real matrix with at least one non-zero element. For each i∈{1,…,m}, let Ri=∑j=1naij be the sum of the i-th row of the matrix A, and for each j∈{1,…,n}, let Cj=∑i=1maij be the sum of the j-th column of the matrix A. Prove that there exist indices k∈{1,…,m} and l∈{1,…,n} such that
akl>0,Rk≥0,Cl≥0,or
akl<0,Rk≤0,Cl≤0.