MathDB
Turkish NMO First Round - 2012 Problem - 34 {Number Theory}

Source:

July 1, 2012

Problem Statement

If 1010 divides the number 121+222+323++n2n1\cdot2^1+2\cdot2^2+3\cdot2^3+\dots+n\cdot2^n, what is the least integer n2012n\geq 2012?
<spanclass=latexbold>(A)</span> 2012<spanclass=latexbold>(B)</span> 2013<spanclass=latexbold>(C)</span> 2014<spanclass=latexbold>(D)</span> 2015<spanclass=latexbold>(E)</span> 2016 <span class='latex-bold'>(A)</span>\ 2012 \qquad <span class='latex-bold'>(B)</span>\ 2013 \qquad <span class='latex-bold'>(C)</span>\ 2014 \qquad <span class='latex-bold'>(D)</span>\ 2015 \qquad <span class='latex-bold'>(E)</span>\ 2016