MathDB
0661 inequality 6th edition Round 6 p1

Source:

May 3, 2021
algebrainequalities6th edition

Problem Statement

Let p>1p > 1 and let a,b,c,da, b, c, d be positive numbers such that (a+b+c+d)(1a+1b+1c+1d)=16p2.(a + b + c + d) \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)= 16p^2. Find all values of the ratio R=max{a,b,c,d}min{a,b,c,d} R =\frac{\max \{a, b, c, d\}}{\min \{a, b, c, d\}} (depending on the parameter pp)