MathDB
let d be a positive divisor of 5 + 1998^{1998}

Source: Vietnam TST 1998 for the 39th IMO, problem 5

June 26, 2005
modular arithmeticquadraticsnumber theory unsolvednumber theory

Problem Statement

Let dd be a positive divisor of 5+199819985 + 1998^{1998}. Prove that d=2x2+2xy+3y2d = 2 \cdot x^2 + 2 \cdot x \cdot y + 3 \cdot y^2, where x,yx, y are integers if and only if dd is congruent to 3 or 7 (mod20)\pmod{20}.