MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
2015 All-Russian Olympiad
3
The 41th All-Russian Q 9.3
The 41th All-Russian Q 9.3
Source: Baidu Post Bar
May 22, 2015
inequalities
number theory
algebra
Problem Statement
Let
a
,
x
,
y
a,x,y
a
,
x
,
y
be positive integer such that
a
>
100
,
x
>
100
,
y
>
100
a>100,x>100,y>100
a
>
100
,
x
>
100
,
y
>
100
and
y
2
−
1
=
a
2
(
x
2
−
1
)
y^2-1=a^2(x^2-1)
y
2
−
1
=
a
2
(
x
2
−
1
)
. Find the minimum value of
a
x
\frac{a}{x}
x
a
.
Back to Problems
View on AoPS