MathDB
x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1 - Greece Juniors 1987 p4

Source:

September 13, 2024
algebrasystem of equations

Problem Statement

If x+y+z=x2+y2+z2=x3+y3+z3=1  with  x,y,zR,x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1 \ \ with \ \ x,y,z\in \mathbb{R}, prove that at least one of x,y,zx,y,z is equal to zero.