MathDB
Today's calculation of integral 104

Source: Kyoto Prefectural University of Medicine entrance exam1989

June 5, 2006
calculusintegrationtrigonometryfunctioncalculus computations

Problem Statement

For 0<x<1,0<x<1, let f(x)=0xdt1t2 dtf(x)=\int_0^x \frac{dt}{\sqrt{1-t^2}}\ dt (1) Find ddxf(1x2)\frac{d}{dx} f(\sqrt{1-x^2}) (2) Find f(12)f\left(\frac{1}{\sqrt{2}}\right) (3) Prove that f(x)+f(1x2)=π2f(x)+f(\sqrt{1-x^2})=\frac{\pi}{2}