MathDB
Element belonging to at least n/k subsets

Source: China Second Round 2015 (A) Q2

May 5, 2016
combinatoricsset theory

Problem Statement

Let S={A1,A2,,An}S=\{A_1,A_2,\ldots ,A_n\}, where A1,A2,,AnA_1,A_2,\ldots ,A_n are nn pairwise distinct finite sets (n2)(n\ge 2), such that for any Ai,AjSA_i,A_j\in S, AiAjSA_i\cup A_j\in S. If k=min1inAi2k= \min_{1\le i\le n}|A_i|\ge 2, prove that there exist xi=1nAix\in \bigcup_{i=1}^n A_i, such that xx is in at least nk\frac{n}{k} of the sets A1,A2,,AnA_1,A_2,\ldots ,A_n (Here X|X| denotes the number of elements in finite set XX).