MathDB
P31 [Combinatorics] - Turkish NMO 1st Round - 2003

Source:

May 31, 2014

Problem Statement

Positive integers are written into squares of a infinite chessboard such that a number nn is written nn times. If the absolute differences of numbers written into any two squares having a common side is not greater than kk, what is the least possible value of kk?
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 2<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 4<spanclass=latexbold>(E)</span> None of the preceding <span class='latex-bold'>(A)</span>\ 1 \qquad<span class='latex-bold'>(B)</span>\ 2 \qquad<span class='latex-bold'>(C)</span>\ 3 \qquad<span class='latex-bold'>(D)</span>\ 4 \qquad<span class='latex-bold'>(E)</span>\ \text{None of the preceding}