MathDB
Integer matrices known fact

Source: Brazilian Mathematical Olympiad 2023, Level U, Problem 4

October 21, 2023
matrixMatrix algebralinear algebraeigenvalue and eigenvector

Problem Statement

Let M2(Z)M_2(\mathbb{Z}) be the set of 2×22 \times 2 matrices with integer entries. Let AM2(Z)A \in M_2(\mathbb{Z}) such that A2+5I=0,A^2+5I=0, where IM2(Z)I \in M_2(\mathbb{Z}) and 0M2(Z)0 \in M_2(\mathbb{Z}) denote the identity and null matrices, respectively. Prove that there exists an invertible matrix CM2(Z)C \in M_2(\mathbb{Z}) with C1M2(Z)C^{-1} \in M_2(\mathbb{Z}) such that CAC1=(1231) ou CAC1=(0150).CAC^{-1} = \begin{pmatrix} 1 & 2\\ -3 & -1 \end{pmatrix} \text{ ou } CAC^{-1} = \begin{pmatrix} 0 & 1\\ -5 & 0 \end{pmatrix}.