MathDB
k boxes with the same number of balls - ILL 1990 CZS3

Source:

September 18, 2010
combinatoricscountingpigeonhole principleIMO ShortlistIMO Longlist

Problem Statement

Let p,kp, k and xx be positive integers such that pkp \geq k and x<[p(pk+1)2(k1)]x < \left[ \frac{p(p-k+1)}{2(k-1)} \right], where [q][q] is the largest integer no larger than qq. Prove that when xx balls are put into pp boxes arbitrarily, there exist kk boxes with the same number of balls.