MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
1991 China Team Selection Test
1
Polynomial inequality
Polynomial inequality
Source: China TST 1991, problem 1
June 27, 2005
algebra
polynomial
inequalities
function
algebra unsolved
Problem Statement
Let real coefficient polynomial
f
(
x
)
=
x
n
+
a
1
⋅
x
n
−
1
+
…
+
a
n
f(x) = x^n + a_1 \cdot x^{n-1} + \ldots + a_n
f
(
x
)
=
x
n
+
a
1
⋅
x
n
−
1
+
…
+
a
n
has real roots
b
1
,
b
2
,
…
,
b
n
b_1, b_2, \ldots, b_n
b
1
,
b
2
,
…
,
b
n
,
n
≥
2
,
n \geq 2,
n
≥
2
,
prove that
∀
x
≥
m
a
x
{
b
1
,
b
2
,
…
,
b
n
}
\forall x \geq max\{b_1, b_2, \ldots, b_n\}
∀
x
≥
ma
x
{
b
1
,
b
2
,
…
,
b
n
}
, we have
f
(
x
+
1
)
≥
2
⋅
n
2
1
x
−
b
1
+
1
x
−
b
2
+
…
+
1
x
−
b
n
.
f(x+1) \geq \frac{2 \cdot n^2}{\frac{1}{x-b_1} + \frac{1}{x-b_2} + \ldots + \frac{1}{x-b_n}}.
f
(
x
+
1
)
≥
x
−
b
1
1
+
x
−
b
2
1
+
…
+
x
−
b
n
1
2
⋅
n
2
.
Back to Problems
View on AoPS