MathDB
BMO 2014 SL N2

Source: Balkan MO 2014 Shortlist

October 10, 2016
number theoryprime numbers

Problem Statement

N2\boxed{N2} Let pp be a prime numbers and x1,x2,...,xnx_1,x_2,...,x_n be integers.Show that if x1n+x2n+...+xpn0(modp)x_1^n+x_2^n+...+x_p^n\equiv 0 \pmod{p} for all positive integers n then x1x2...xp(modp).x_1\equiv x_2 \equiv...\equiv x_p \pmod{p}.