p divides sigma(p-1)
Source: Oliforum math contest, problem 1
September 30, 2009
functionmodular arithmeticnumber theoryprime factorizationnumber theory proposed
Problem Statement
Let be the function from every positive integer to the sum of divisors (i.e. \sigma(6) \equal{} 6 \plus{} 3 \plus{} 2 \plus{} 1 and \sigma(8) \equal{} 8 \plus{} 4 \plus{} 2 \plus{} 1).
Find all primes such that p \mid \sigma(p \minus{} 1).
(Salvatore Tringali)