MathDB
Increasing function implies existence of non-increasing one

Source: VJIMC 2017, Category II, Problem 2

April 2, 2017
functionreal analysiscollege contests

Problem Statement

Prove or disprove the following statement. If g:(0,1)(0,1)g:(0,1) \to (0,1) is an increasing function and satisfies g(x)>xg(x) > x for all x(0,1)x \in (0,1), then there exists a continuous function f:(0,1)Rf:(0,1) \to \mathbb{R} satisfying f(x)<f(g(x))f(x) < f(g(x)) for all x(0,1)x \in (0,1), but ff is not an increasing function.