MathDB
O coincides the incenter

Source: Iranian third round 2015 geometry problem 5

September 10, 2015
geometrycircumcircleincenter

Problem Statement

Let ABCABC be a triangle with orthocenter HH and circumcenter OO. Let RR be the radius of circumcircle of ABC\triangle ABC. Let A,B,CA',B',C' be the points on AH,BH,CH\overrightarrow{AH},\overrightarrow{BH},\overrightarrow{CH} respectively such that AH.AA=R2,BH.BB=R2,CH.CC=R2AH.AA'=R^2,BH.BB'=R^2,CH.CC'=R^2. Prove that OO is incenter of ABC\triangle A'B'C'.