MathDB
infinite factorial sum with trig expression

Source: VJIMC 1997 2.4-M

October 9, 2021
trigonometrySummationreal analysislimitsfactorial

Problem Statement

Prove that n=1n2(7n)!=173k=12j=06ecos(2πj/7)cos(2kπj7+sin2πj7).\sum_{n=1}^\infty\frac{n^2}{(7n)!}=\frac1{7^3}\sum_{k=1}^2\sum_{j=0}^6e^{\cos(2\pi j/7)}\cdot\cos\left(\frac{2k\pi j}7+\sin\frac{2\pi j}7\right).