MathDB
Sequence

Source: Pre-VMO 2012 - Problem 1

November 27, 2011
inductionalgebra proposedalgebra

Problem Statement

Let a sequence {xn}\left\{ {{x_n}} \right\} defined by: {x0=2xn=114xn12,n1\left\{ \begin{array}{l} {x_0} = - 2 \\ {x_n} = \frac{{1 - \sqrt {1 - 4{x_{n - 1}}} }}{2},\forall n \ge 1 \\ \end{array} \right. Denote un=n.xnu_n=n.x_n and vn=i=0n(1+xi2){v_n} = \prod\limits_{i = 0}^n {\left( {1 + x_i^2} \right)} . Prove that {un}\left\{ {{u_n}} \right\}, {vn}\left\{ {{v_n}} \right\} have finite limit.