MathDB
2016 Guts #16

Source:

August 14, 2022
2016Guts Round

Problem Statement

Let the notation ABC\underline{ABC} denote the number compromised of the digits AA, BB, and CC with 0A,B,C90\leq A,B,C\leq9. That is, ABC=100A+10B+C\underline{ABC}=100A+10B+C and CCAAC=10000C+1000C+100A+10A+C\underline{CCAAC}=10000C+1000C+100A+10A+C. Now, if (ABC)2=CCAAC(\underline{ABC})^2=\underline{CCAAC}, where AA, BB, and CC are distinct nonzero digits, find the 33 digit number ABC\underline{ABC}.