IMC 2008 Day 2 P5 - Determinant
Source: Problem 5
July 28, 2008
linear algebramatrixIMCcollege contests
Problem Statement
Let be a positive integer, and consider the matrix A \equal{} (a_{ij})_{1\leq i,j\leq n} where a_{ij} \equal{} 1 if i\plus{}j is prime and a_{ij} \equal{} 0 otherwise.
Prove that |\det A| \equal{} k^2 for some integer .