MathDB
a_i+ a_i* =a _ {i-1} +a_ {i + 1}

Source: Ukraine TST 2011 p4

May 7, 2020
combinatoricsSumSets

Problem Statement

Suppose an ordered set of (a1, a2, , an) ({{a} _{1}}, \ {{a} _{2}},\ \ldots,\ {{a} _{n}}) real numbers, n3n \ge 3 . It is possible to replace the number ai {{a} _ {i}} , i=2, n1 i = \overline {2, \ n-1} by the number ai a_ {i} ^ {*} that ai+ai=ai1+ai+1 {{a} _ {i}} + a_ {i} ^ {*} = {{a} _ {i-1}} + {{a} _ {i + 1}} . Let (b1, b2, , bn) ({{b} _ {1}},\ {{b} _ {2}}, \ \ldots, \ {{b} _ {n}}) be the set with the largest sum of numbers that can be obtained from this, and (c1, c2, , cn) ({{c} _ {1}},\ {{c} _ {2}}, \ \ldots, \ {{c} _ {n}}) is a similar set with the least amount. For the odd n3n \ge 3 and set (1, 3, , n, 2, 4, , n1) (1,\ 3, \ \ldots, \ n, \ 2, \ 4, \ \ldots,\ n-1) find the values of the expressions b1+b2++bn {{b} _ {1}} + {{b} _ {2}} + \ldots + {{b} _ {n}} and c1+c2++cn {{c} _ {1}} + {{c} _ {2}} + \ldots + {{c} _ {n}} .