MathDB
Benelux Olympiad 2020, Problem 2 (paths defined by tiles on board)

Source: BxMO 2020, Problem 2

May 2, 2020
combinatoricsBxMOBeneluxrotation

Problem Statement

Let NN be a positive integer. A collection of 4N24N^2 unit tiles with two segments drawn on them as shown is assembled into a 2N×2N2N\times2N board. Tiles can be rotated. [asy]size(1.5cm);draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);draw((0,0.5)--(0.5,0),red);draw((0.5,1)--(1,0.5),red);[/asy] The segments on the tiles define paths on the board. Determine the least possible number and the largest possible number of such paths.
For example, there are 99 paths on the 4×44\times4 board shown below. [asy]size(4cm);draw((0,0)--(4,0)--(4,4)--(0,4)--cycle);draw((0,1)--(4,1));draw((0,2)--(4,2));draw((0,3)--(4,3));draw((1,0)--(1,4));draw((2,0)--(2,4));draw((3,0)--(3,4));draw((0,3.5)--(0.5,4),red);draw((0,2.5)--(1.5,4),red);draw((3.5,0)--(4,0.5),red);draw((2.5,0)--(4,1.5),red);draw((0.5,0)--(0,0.5),red);draw((2.5,4)--(3,3.5)--(3.5,4),red);draw((4,3.5)--(3.5,3)--(4,2.5),red);draw((0,1.5)--(1,2.5)--(1.5,2)--(0.5,1)--(1.5,0),red);draw((1.5,3)--(2,3.5)--(3.5,2)--(2,0.5)--(1.5,1)--(2.5,2)--cycle,red);[/asy]