MathDB
Hard Inequality

Source: 2009 József Wildt International Mathematical Competition

April 15, 2020
inequalities

Problem Statement

Let aa, bb, cc be positive real numbers such that a+b+c=1a + b + c = 1. Prove that (1+ab+c)1abc(1+bc+a)1bca(1+ca+b)1cab364\sqrt[3]{\left (\frac{1+a}{b+c}\right )^{\frac{1-a}{bc}}\left (\frac{1+b}{c+a}\right )^{\frac{1-b}{ca}}\left (\frac{1+c}{a+b}\right )^{\frac{1-c}{ab}}} \geq 64