MathDB
Problems
Contests
Undergraduate contests
IMC
2002 IMC
12
IMC 2002 Problem 12
IMC 2002 Problem 12
Source: IMC 2002
March 7, 2021
gradient
inequalities
real analysis
Problem Statement
Let
f
:
R
n
→
R
f:\mathbb{R}^{n}\rightarrow \mathbb{R}
f
:
R
n
→
R
be a convex function whose gradient
∇
f
\nabla f
∇
f
exists at every point of
R
n
\mathbb{R}^{n}
R
n
and satisfies the condition
∃
L
>
0
∀
x
1
,
x
2
∈
R
n
:
∣
∣
∇
f
(
x
1
)
−
∇
f
(
x
2
)
∣
∣
≤
L
∣
∣
x
1
−
x
2
∣
∣
.
\exists L>0\; \forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||\leq L||x_{1}-x_{2}||.
∃
L
>
0
∀
x
1
,
x
2
∈
R
n
:
∣∣∇
f
(
x
1
)
−
∇
f
(
x
2
)
∣∣
≤
L
∣∣
x
1
−
x
2
∣∣.
Prove that
∀
x
1
,
x
2
∈
R
n
:
∣
∣
∇
f
(
x
1
)
−
∇
f
(
x
2
)
∣
∣
2
≤
L
⟨
∇
f
(
x
1
)
−
∇
f
(
x
2
)
,
x
1
−
x
2
⟩
.
\forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||^{2}\leq L\langle\nabla f(x_{1})-\nabla f(x_{2}), x_{1}-x_{2}\rangle.
∀
x
1
,
x
2
∈
R
n
:
∣∣∇
f
(
x
1
)
−
∇
f
(
x
2
)
∣
∣
2
≤
L
⟨
∇
f
(
x
1
)
−
∇
f
(
x
2
)
,
x
1
−
x
2
⟩
.
Back to Problems
View on AoPS