MathDB
IMC 2002 Problem 12

Source: IMC 2002

March 7, 2021
gradientinequalitiesreal analysis

Problem Statement

Let f:RnRf:\mathbb{R}^{n}\rightarrow \mathbb{R} be a convex function whose gradient f\nabla f exists at every point of Rn\mathbb{R}^{n} and satisfies the condition L>0  x1,x2Rn:    f(x1)f(x2)Lx1x2.\exists L>0\; \forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||\leq L||x_{1}-x_{2}||. Prove that x1,x2Rn:    f(x1)f(x2)2Lf(x1)f(x2),x1x2. \forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||^{2}\leq L\langle\nabla f(x_{1})-\nabla f(x_{2}), x_{1}-x_{2}\rangle.