MathDB
Idealized unit-element commutative ring

Source: Miklós Schweitzer 2010 , P4

September 9, 2020
abstract algebra

Problem Statement

Prove that if n2 n \geq 2 and I1,I2,,In I_ {1}, I_ {2}, \ldots, I_ {n} are idealized in a unit-element commutative ring such that any nonempty H{1,2,,n} H \subseteq \{ 1,2, \dots, n \} then if hHIh \sum_ {h \in H} I_ {h} Is ideal I2I3I4In+I1I3I4In++I1I2In1 I_ {2} I_ {3} I_ {4} \dots I_ {n} + I_ {1} I_ {3} I_ {4} \dots I_ {n} + \dots + I_ {1} I_ {2} \dots I_ {n-1} also Is ideal.