MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2010 Miklós Schweitzer
4
Idealized unit-element commutative ring
Idealized unit-element commutative ring
Source: Miklós Schweitzer 2010 , P4
September 9, 2020
abstract algebra
Problem Statement
Prove that if
n
≥
2
n \geq 2
n
≥
2
and
I
1
,
I
2
,
…
,
I
n
I_ {1}, I_ {2}, \ldots, I_ {n}
I
1
,
I
2
,
…
,
I
n
are idealized in a unit-element commutative ring such that any nonempty
H
⊆
{
1
,
2
,
…
,
n
}
H \subseteq \{ 1,2, \dots, n \}
H
⊆
{
1
,
2
,
…
,
n
}
then if
∑
h
∈
H
I
h
\sum_ {h \in H} I_ {h}
∑
h
∈
H
I
h
Is ideal
I
2
I
3
I
4
…
I
n
+
I
1
I
3
I
4
…
I
n
+
⋯
+
I
1
I
2
…
I
n
−
1
I_ {2} I_ {3} I_ {4} \dots I_ {n} + I_ {1} I_ {3} I_ {4} \dots I_ {n} + \dots + I_ {1} I_ {2} \dots I_ {n-1}
I
2
I
3
I
4
…
I
n
+
I
1
I
3
I
4
…
I
n
+
⋯
+
I
1
I
2
…
I
n
−
1
also Is ideal.
Back to Problems
View on AoPS