MathDB
Miklos Schweitzer 1964_2

Source:

September 20, 2008
algebrapolynomialcalculusintegrationadvanced fieldsadvanced fields unsolved

Problem Statement

Let p p be a prime and let l_k(x,y)\equal{}a_kx\plus{}b_ky \;(k\equal{}1,2,...,p^2)\ . be homogeneous linear polynomials with integral coefficients. Suppose that for every pair (ξ,η) (\xi,\eta) of integers, not both divisible by p p, the values lk(ξ,η),  1kp2 l_k(\xi,\eta), \;1\leq k\leq p^2 , represent every residue class mod  p \textrm{mod} \;p exactly p p times. Prove that the set of pairs {(ak,bk):1kp2} \{(a_k,b_k): 1\leq k \leq p^2 \} is identical mod  p \textrm{mod} \;p with the set \{(m,n): 0\leq m,n \leq p\minus{}1 \}.