MathDB
SEEMOUS 2020 P2

Source:

May 2, 2020
calculus

Problem Statement

Let k>1k>1 be a real number. Calculate: (a) L=limn01(kxn+k1)ndx.L=\lim_{n\to \infty} \int_0^1\left( \frac{k}{\sqrt[n]{x}+k-1}\right)^n\text{d} x. (b) limnn[L01(kxn+k1)ndx].\lim_{n\to \infty} n\left\lbrack L- \int_0^1\left( \frac{k}{\sqrt[n]{x}+k-1}\right)^n\text{d} x\right\rbrack.