MathDB
inequality in triangle with medians

Source: Mongolia MO 2001 Grade 10 P2

April 12, 2021
geometric inequalityInequalitygeometry

Problem Statement

In an acute-angled triangle ABCABC, a,b,ca,b,c are sides, ma,mb,mcm_a,m_b,m_c the corresponding medians, RR the circumradius and rr the inradius. Prove the inequality a2+b2a+bb2+c2b+ca2+c2a+c16R2rmaambbmcc.\frac{a^2+b^2}{a+b}\cdot\frac{b^2+c^2}{b+c}\cdot\frac{a^2+c^2}{a+c}\ge16R^2r\frac{m_a}a\cdot\frac{m_b}b\cdot\frac{m_c}c.