MathDB
Integer values of a sequence

Source: Austrian-Polish 2001, Problem 6

August 3, 2015
floor functionSequenceIntegeralgebranumber theory

Problem Statement

Let kk be a fixed positive integer. Consider the sequence definited by a_{0}=1 \;\; , a_{n+1}=a_{n}+\left\lfloor\root k \of{a_{n}}\right\rfloor \;\; , n=0,1,\cdots where x\lfloor x\rfloor denotes the greatest integer less than or equal to xx. For each kk find the set AkA_{k} containing all integer values of the sequence (ank)n0(\sqrt[k]{a_{n}})_{n\geq 0}.