MathDB
An inequality on the coefficients of a monic polynomial

Source: Balkan MO ShortList 2009 A5

April 6, 2020

Problem Statement

Given the monic polynomial \begin{align*} P(x) = x^N +a_{N-1}x^{N-1} + \ldots + a_1 x + a_0 \in \mathbb{R}[x] \end{align*} of even degree NN == 2n2n and having all real positive roots xix_i, for 1iN1 \le i \le N. Prove, for any cc \in [0,min1iN{xi})[0, \underset{1 \le i \le N}{\min} \{x_i \} ), the following inequality \begin{align*} c + \sqrt[N]{P(c)} \le \sqrt[N]{a_0} \end{align*}