MathDB
Putnam 1987 A5

Source:

August 5, 2019
Putnam

Problem Statement

Let G(x,y)=(yx2+4y2,xx2+4y2,0). \vec{G}(x,y) = \left( \frac{-y}{x^2+4y^2}, \frac{x}{x^2+4y^2},0 \right). Prove or disprove that there is a vector-valued function F(x,y,z)=(M(x,y,z),N(x,y,z),P(x,y,z)) \vec{F}(x,y,z) = (M(x,y,z), N(x,y,z), P(x,y,z)) with the following properties:
(i) M,N,PM,N,P have continuous partial derivatives for all (x,y,z)(0,0,0)(x,y,z) \neq (0,0,0); (ii) CurlF=0\mathrm{Curl}\,\vec{F} = \vec{0} for all (x,y,z)(0,0,0)(x,y,z) \neq (0,0,0); (iii) F(x,y,0)=G(x,y)\vec{F}(x,y,0) = \vec{G}(x,y).