MathDB
Recurrence sequence grows like sqrt(2log n)

Source: VJIMC 2024, Category II, Problem 3

April 14, 2024
recurrence relationSequenceslimitasymptotic behaviourreal analysis

Problem Statement

Let a1>0a_1>0 and for n1n \ge 1 define an+1=an+1a1+a2++an.a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}. Prove that limnan2lnn=2.\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.