MathDB
Putnam 1978 A2

Source: Putnam 1978

May 2, 2022
Putnammatrixdeterminant

Problem Statement

Let a,b,p1,p2,,pna,b, p_1 ,p_2, \ldots, p_n be real numbers with aba \ne b. Define f(x)=(p1x)(p2x)(pnx)f(x)= (p_1 -x) (p_2 -x) \cdots (p_n -x). Show that det(p1aaabp2aabbp3abbbpn)=bf(a)af(b)ba. \text{det} \begin{pmatrix} p_1 & a& a & \cdots & a \\ b & p_2 & a & \cdots & a\\ b & b & p_3 & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ b & b& b &\cdots &p_n \end{pmatrix}= \frac{bf(a) -af(b)}{b-a}.