MathDB
fermat point, vector (in)equalities

Source: 2022 Viet Nam math olympiad for high school students D1 P3

March 20, 2023
geometry

Problem Statement

Let ABCABC be a triangle with A,B,C<120\angle A,\angle B,\angle C <120^{\circ}, TT is its Fermat-Torricelli point. Consider a point PP lying on the same plane with ABC\triangle ABC. Prove that: a)TATA+TBTB+TCTC=0.\dfrac{\overrightarrow {TA}}{TA}+\dfrac{\overrightarrow {TB}}{TB}+\dfrac{\overrightarrow {TC}}{TC}=\overrightarrow {0}. b)PA+PB+PCPA.TATA+PB.TBTB+PC.TCTC.PA + PB + PC \ge \frac{{\overrightarrow {PA} \overrightarrow {.TA} }}{{TA}} + \frac{{\overrightarrow {PB} .\overrightarrow {TB} }}{{TB}} + \frac{{\overrightarrow {PC} \overrightarrow {.TC} }}{{TC}}. c)PA+PB+PCTA+TB+TCPA + PB + PC \ge TA + TB + TCand the equality occurs iff PTP\equiv T.