MathDB
Problems
Contests
International Contests
Tournament Of Towns
2002 Tournament Of Towns
4
This might be Jensen!!
This might be Jensen!!
Source: Tournament of Towns, Fall 2002, Senior O Level, P4
May 17, 2014
inequalities
trigonometry
inequalities proposed
Problem Statement
x
,
y
,
z
∈
(
0
,
π
2
)
x,y,z\in\left(0,\frac{\pi}{2}\right)
x
,
y
,
z
∈
(
0
,
2
π
)
are given. Prove that:
x
cos
x
+
y
cos
y
+
z
cos
z
x
+
y
+
z
≤
cos
x
+
cos
y
+
cos
z
3
\frac{x\cos x+y\cos y+z\cos z}{x+y+z}\le \frac{\cos x+\cos y+\cos z}{3}
x
+
y
+
z
x
cos
x
+
y
cos
y
+
z
cos
z
≤
3
cos
x
+
cos
y
+
cos
z
Back to Problems
View on AoPS