MathDB
Prove g(k-1)=g(k)=g(k+1) for non-decreasing g is impossible

Source: Greece MO 1998

May 27, 2011
functioninductionfloor functionalgebra proposedalgebra

Problem Statement

Let a function g:N0N0g:\mathbb{N}_0\to\mathbb{N}_0 satisfy g(0)=0g(0)=0 and g(n)=ng(g(n1))g(n)=n-g(g(n-1)) for all n1n\ge 1. Prove that:
a) g(k)g(k1)g(k)\ge g(k-1) for any positive integer kk. b) There is no kk such that g(k1)=g(k)=g(k+1)g(k-1)=g(k)=g(k+1).