MathDB
H 30

Source:

May 25, 2007
Diophantine Equations

Problem Statement

Let aa, bb, cc be given integers, a>0a>0, acb2=pac-b^2=p a squarefree positive integer. Let M(n)M(n) denote the number of pairs of integers (x,y)(x, y) for which ax2+bxy+cy2=nax^2 +bxy+cy^2=n. Prove that M(n)M(n) is finite and M(n)=M(pkn)M(n)=M(p^{k} \cdot n) for every integer k0k \ge 0.