MathDB
Complicated looking limit

Source: 17th SEEMOUS 2023, Problem 2

March 9, 2023
real analysislimitSequencesSeemous

Problem Statement

For the sequence Sn=1n2+12+1n2+22++1n2+n2,S_n=\frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}},find the limit limnn(n(log(1+2)Sn)122(1+2)).\lim_{n\to\infty}n\left(n\cdot\left(\log(1+\sqrt{2})-S_n\right)-\frac{1}{2\sqrt{2}(1+\sqrt{2})}\right).