MathDB
Prove this hard inequality

Source: 2009 Jozsef Wildt International Math Competition

April 27, 2020
inequalities

Problem Statement

If ai>0a_i >0 (i=1,2,,ni=1, 2, \cdots , n) and i=1naik=1\sum \limits_{i=1}^n a_i^k=1, where 1kn+11\leq k\leq n+1, then i=1nai+1i=1nain11k+nnk\sum \limits_{i=1}^n a_i + \frac{1}{\prod \limits_{i=1}^n a_i} \geq n^{1-\frac{1}{k}}+n^{\frac{n}{k}}