MathDB
Polynomial

Source: Baltic Way 2015

November 8, 2015
algebrapolynomialnumber theory

Problem Statement

Let f(x)=xn+an1xn1+...+a0f(x)=x^n + a_{n-1}x^{n-1} + ...+ a_0 be a polynomial of degree n1 n\ge 1 with n n (not necessarily distinct) integer roots. Assume that there exist distinct primes p0,p1,..,pn1p_0,p_1,..,p_{n-1} such that ai>1a_i > 1 is a power of pip_i, for all i=0,1,..,n1 i=0,1,..,n-1. Find all possible values of n n.