For coprime positive integers a,b,denote (a−1modb) by the only integer 0≤m<b such that am≡1(modb)
(1)Prove that for pairwise coprime integers a,b,c, 1<a<b<c,we have(a−1modb)+(b−1modc)+(c−1moda)>a.
(2)Prove that for any positive integer M,there exists pairwise coprime integers a,b,c, M<a<b<c such that
(a−1modb)+(b−1modc)+(c−1moda)<100a.