MathDB
Inequality with geometric mean and 1+\frac{1}{x(1+x)}

Source: 239 2001 J7 S2

May 19, 2020
inequalities

Problem Statement

For any positive numbers a1,a2,,an a_1 , a_2 , \dots, a_n prove the inequality  ⁣( ⁣1 ⁣+ ⁣1a1(1+a1) ⁣) ⁣( ⁣1 ⁣+ ⁣1a2(1+a2) ⁣) ⁣ ⁣( ⁣1 ⁣+ ⁣1an(1+an) ⁣)( ⁣1 ⁣+ ⁣1p(1+p) ⁣) ⁣n ⁣,\! \left(\!1\!+\!\frac{1}{a_1(1+a_1)} \!\right)\! \left(\!1\!+\!\frac{1}{a_2(1+a_2)} \! \right) \! \dots \! \left(\!1\!+\!\frac{1}{a_n(1+a_n)} \! \right) \geq \left(\!1\!+\!\frac{1}{p(1+p)} \! \right)^{\! n} \! , where p=a1a2annp=\sqrt[n]{a_1 a_2 \dots a_n}.