MathDB
two traingles and 6 points of intersection

Source: Iran Third Round MO 1997, Exam 2, P2

March 23, 2004
geometryparallelogramgeometry proposed

Problem Statement

Let ABCABC and XYZXYZ be two triangles. Define A1=BCZX,A2=BCXY,A_1=BC\cap ZX, A_2=BC\cap XY,B1=CAXY,B2=CAYZ,B_1=CA\cap XY, B_2=CA\cap YZ,C1=ABYZ,C2=ABZX.C_1=AB\cap YZ, C_2=AB\cap ZX. Hereby, the abbreviation ghg\cap h means the point of intersection of two lines gg and hh.
Prove that C1C2AB=A1A2BC=B1B2CA\frac{C_1C_2}{AB}=\frac{A_1A_2}{BC}=\frac{B_1B_2}{CA} holds if and only if A1C2XZ=C1B2ZY=B1A2YX\frac{A_1C_2}{XZ}=\frac{C_1B_2}{ZY}=\frac{B_1A_2}{YX}.