MathDB
India TST 2009 DAY 1:PROBLEM 3

Source: medium

May 14, 2009
AMCUSA(J)MOUSAMOnumber theory proposednumber theory

Problem Statement

Let a,b a,b be two distinct odd natural numbers.Define a Sequence <an>n0 { < a_n > }_{n\ge 0} like following: a_1 \equal{} a \\ a_2 \equal{} b \\ a_n \equal{} \text{largest odd divisor of }(a_{n \minus{} 1} \plus{} a_{n \minus{} 2}). Prove that there exists a natural number N N such that a_n \equal{} gcd(a,b) \forall n\ge N.