MathDB
nth Root Inequality

Source: 1992 IrMO Paper 2 Problem 5

October 2, 2017
Inequalityinequalities

Problem Statement

If, for k=1,2,,nk=1,2,\dots ,n, aka_k and bkb_k are positive real numbers, prove that a1a2ann+b1b2bnn(a1+b1)(a2+b2)(an+bn)n;\sqrt[n]{a_1a_2\cdots a_n}+\sqrt[n]{b_1b_2\cdots b_n}\le \sqrt[n]{(a_1+b_1)(a_2+b_2)\cdots (a_n+b_n)}; and that equality holds if, and only if, a1b1=a2b2==anbn.\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots =\frac{a_n}{b_n}.