MathDB
s(k)+s(f(n)-k) = n, sum of digits

Source: 1997 Swedish Mathematical Competition p5

April 2, 2021
number theorysum of digits

Problem Statement

Let s(m)s(m) denote the sum of (decimal) digits of a positive integer mm. Prove that for every integer n>1n > 1 not equal to 1010 there is a unique integer f(n)2f(n) \ge 2 such that s(k)+s(f(n)k)=ns(k)+s(f(n)-k) = n for all integers kk with 0<k<f(n)0 < k < f(n).